
AcloudBank

AcloudBank is not a company or a person, it is a community of people who shares the

same libertarian values and freedom. Join the financial revolution with the most

advanced blockchain platform to run decentralized fintech. Our innovative Blockchain

as Organization (BaO) architecture integrates financial technologies into an efficient,

transparent, and reliable financial ecosystem.

2
AcloudBank Whitepaper V 1.0

Contents

EXECUTIVE SUMMARY..4

INTRODUCTION ..5

OUR SOLUTION: ACLOUDBANK ...7

ACLOUDBANK BUSINESS CASE...10

TECHNOLOGY OVERVIEW ...13

USER FRIENDLY APPLICATION ..17

THE TOKEN ECONOMY ...18

FUND DISTRIBUTION...19

ROAD MAP ..20

OUR TEAM...21

DISCLAIMER...26

3
AcloudBank Whitepaper V 1.0

EXECUTIVE SUMMARY

AcloudBank is a Network of High Performance, User Friendly

Decentralized Blockchain Technologies.

With cryptocurrencies having appreciable growth over the past year, it’s reasonable
to deduce that they assure sustainability and profitability. AcloudBank is a simple,
safe and secure financing and trading platform powered by blockchain
technology.

This document presents an application structure for AcloudBank, a decentralized
ecosystem that aims to shape the future of the decentralized cryptocurrency
market. To optimize the financing cycle and open access to an organized

decentralized platform, ACLOUDBANK presents a contracting mechanism between
enthusiasts, investors, and entrepreneurs.

AcloudBank comes to the market at a crucial time. Our vision is to become world’s
leading bitcoin and blockchain technology provider. We believe consensus
technology has the power to do for economics what the internet did for information.
ACLOUDBANK looks to extend the innovation of the blockchain to all industries that
rely upon the internet to provide their services. Whether its banking, stock
exchanges, lotteries, voting, music, auctions or many others services at a fraction of
the cost incurred by their more traditional, centralized counterparts.

We plunged into this market to create a decentralized autonomous organization
that allows you to run your own cryptocurrency exchange website based upon the
blockchain decentralized platform (The DAO) with a few clicks of a button.

With the sustainable development of the decentralized blockchain technology,
AcloudBank will provide significant support for more new projects, to the
management as well as circulation of blockchain assets, and make efforts to
improve and promote the ecological status of the cryptocurrency market.
4
AcloudBank Whitepaper V 1.0

INTRODUCTION

What is a decentralized blockchain system?

A decentralized blockchain system is one which requires multiple parties to make
their own independent decisions. In such a decentralized system, there is no single
centralized authority that makes decisions on behalf of all the parties.
Decentralization describes the design of a network that isn’t managed by a central
party. Instead, peer-to-peer interaction drives the network, as no third party is
needed!

Why is decentralization necessary?

Decentralization avoids the abuse of power from central authorities. However, this
comes at the cost of every participant taking on some responsibility themselves.
Decentralization creates a reliable administration and improves local development,
better ensures the rights of the participants, and better protect crypto enthusiasts
into the community.

The current Decentralized market - Setback

Cryptocurrency trading comes with risks, but traders should not face any other risks
than those they are already willing to take. Due to the lack of security, transparency,
and efficiency that centralized exchanges have demonstrated, a strong demand
for decentralized exchanges have surfaced.

NOT ALL DECENTRALIZED EXCHANGES ARE CREATED

EQUAL

Currently, most decentralized exchanges operate as a guarantee for a democratic
system. They promise security, control and global marketplace. However, they all
have common setbacks such as lack of trust and transparency, Low liquidity levels,
low volume, Inefficient, slow transaction speed and mostly not user friendly.

Challenge: Trust and transparency

Throughout history middlemen have suffered a common fate. Markets like to be
efficient and middlemen get replaced with more efficient alternatives. The current
decentralized market lacks integration, trust and transparency as well as efficiency.
Furthermore, it does not incentivize further green energy generation capacity
investments.

Blockchain promised to help cut down the middlemen. However, cryptocurrency
exchanges which are centralized have broken this promise. One of cryptocurrencies
main characteristic is decentralization, with no central body controlling it. The world
started believing in cryptocurrencies given that governments and banks were
controlling and manipulating fiat
5

AcloudBank Whitepaper V 1.0

currencies

In came centralized exchanges which control cryptocurrencies similarly to how
central bodies control fiat currencies. The hacks, the manipulation and the charges
for listing a token have brought back the evils of the traditional banking system.

Challenge: Poor Navigation and User Interface

Most notably, decentralized exchanges are are clumpy and unintuitive, leading to
errors in placing orders. For a beginner, trading can be difficult, but even with
popular decentralized exchanges, trading is cumbersome. Users have been known
to place incorrect orders because of poor interface and difficulty of navigating the
system. This acts as a barrier to adoption and lead to loss of funds.

Mission and Vision

AcloudBank ultimate aim is to transform the way decentralized market operate. We
do so by providing a technologically more efficient, transparent and reliable
solution, making use of a public blockchain ledger and smart contracts.

Our Vision is to be become world’s leading bitcoin and blockchain technology
provider through a community of community of people who shares the same
libertarian values and freedom.
6
AcloudBank Whitepaper V 1.0

OUR SOLUTION: ACLOUDBANK

When we think of the decentralized market in this way, our role become one of
shaping and correcting these defaces, in areas relevant to us, our investors and the
crypto community at large.

AcloudBank Platform

AcloudBank was designed to provide a full-service platform to launch a
decentralized bank, decentralized trading, social networks and prediction markets
through its unique offering. The key feature of AcloudBank is that it has brought
decentralization to a new level; our platform is not only decentralized at a technical
level but also with surefire strategy.

To achieve this, AcloudBank allows users to freely set their own smart contracts and
exchange digital assets on their terms in an open source, secure, fast and truly
decentralized process directly on the blockchain. Our goal is not to compete with
other exchanges, but rather to start from where their offerings end.

AcloudBank seeks to enable Investors to trade confidently and operate their own
platforms on AcloudBank at a reduced cost.

What makes AcloudBank different?

AcloudBank is owned and run by everyone. We built a decentralized community
and technologies that enable you to build a trustworthy reputation on your online
journey. Besides meeting the ideological criteria for a decentralized exchange,
AcloudBank is user friendly, democratic and rewarding.

Efficient and Speedy decentralized transaction processing

We utilize three types of transactions within the platform:

1. Local transaction between different accounts of the same cryptocurrency

2. Same protocol-based transaction created off the same protocol but between
different currencies.

3. Cross-chain transactions of different coins with different protocol

Multi-Purpose Super Wallet

AcloudBank utilize a super wallet that supports asset management, self-service
transactions, payment, secure chat, social media and more.

7
AcloudBank Whitepaper V 1.0

User Experience

Few things are more critical for widespread adoption than a successful user
experience. As mentioned earlier, an attractive and usable UI (User Interface) is
often overlooked by the majority of blockchain technology projects. In recognizing
this, AcloudBank has entrusted its frontend design to one of the best design
company in the industry. Traders will be able to use and experience a great, intuitive
UI.

Democracy

A decentralized system must be responsive to the needs of a decentralized
community without surrendering the ideals of decentralization. To achieve this,
AcloudBank uses a decentralized governance voting system.

Network growth through rewards

While many U.S. consumers are shopping with their mobile phones1, few make
mobile payments. Deloitte’s “2016 Holiday Survey” found that only one in four mobile
phone users make mobile payments using a retailer app, and even fewer (13
percent) use mobile wallets for in-store payments. However, according to Points’
“State of Mobile Wallet Loyalty and Engagement in 2016” study, 94 percent of
consumers would use mobile wallets more frequently if they could earn and redeem
loyalty.

Depending on their personal lifestyles and preferences, consumers participate in a
variety of loyalty programs offered by coffee shops, supermarkets, drug stores,
hotels, airlines, and other retailers. One study suggests that 72 percent of consumers
participate in between one and five loyalty programs. With multiple memberships, it
can be difficult for customers to keep track of the various rewards points, remember

to bring membership cards and coupons to the stores, or even recall that they are
members of a particular loyalty program.

To help consumers manage their loyalty accounts more easily and boost customer
engagement, retailers are increasingly offering mobile apps with the ability to track
and redeem points, make mobile payments, receive location-based offers, and
provide added convenience and utility. Other features include the ability to add
multiple retailers’ loyalty cards and keep track of several rewards programs in one
place.

AcloudBank has an advanced referral program built directly into its software.
Financial networks derive their value primarily from their network effect: more people
on the same network increases the value of that network for everyone. AcloudBank
capitalizes on this by rewarding those who sign up new users, and does so in a fully
transparent and automated way.

No More Addresses

In AcloudBank, we have separated the permissions from the identity. Hence, as an
exchange you don’t need to ever deal with addresses again. In fact, you actually
cannot possibly use
8
AcloudBank Whitepaper V 1.0

an address because they only define so called authorities that can control the funds
(or the account name). This should greatly simplify integration as you don’t need to
store thousands of addresses and their corresponding private keys.

What does our token (CREDIT) stand for?

9
AcloudBank Whitepaper V 1.0

ACLOUDBANK BUSINESS CASE

We will begin with ecosystem creation after the token sale, due to the unique
regulatory framework to be implemented.

The platform will grow through by providing greater transparency and simplicity to
the market and delivering value unavailable today, due to market inefficiencies.
With focus on growth, it is paramount to create the best experience for the
AcloudBank platform user. The AcloudBank team is engaging qualified project
developers in the field, developing market price based projects with a professional
team to be expanded upon entering new markets.

We have secured our first Investors who are testing out the BETA platform.
AcloudBank continues working on increasing the platform’s project pipeline and
more partnerships will be announced after the token sale

Essential Features

Decentralized Bank

No one can block your wallet or request your ID, Fully anonymous banking facility.

Decentralized chat

Blockchain based fully encrypted decentralized personal and group chats.

10
AcloudBank Whitepaper V 1.0

OTC Trading

Over-the-counter (OTC) or off- exchange trading is done directly between two
parties, without the supervision of an exchange. It is contrasted with exchange
trading, which occurs via exchanges. A stock exchange has the benefit of
facilitating liquidity, providing transparency, and maintaining the current market
price. In an OTC trade, the price is not necessarily published for the public.

Untraceable Transactions

Fully private accounts with no tracing. Your personal chain is encrypted and no-one
can see your transactions.

Mining

Everyone can mine CREDIT by running a full node to support the network.

Social Network

Blockchain based and fully encrypted decentralized Social network. Forget about
Facebook, google or twitter tracking, blocking or annoying ads. True democracy
supported by blockchain network

Decentralized trading

From day one, you can trade with others without limits. 100k Transaction per second.
Block generated every 2 seconds.

White Label - Decentralized autonomous organization

Running your own cryptocurrency exchange website based upon the blockchain
decentralized platform (The DAO) with a few clicks of a button.

High performance

A liquidity-ready trading platform to help you launch a cryptocurrency exchange
business within 2 weeks. Over 1500 coins, fiat gateways, stable coins and unmatched
security and localizations — all included, without investing heavily in development
and infrastructure. AcloudBank is one of the fastest blockchain existed on the
market*

11
AcloudBank Whitepaper V 1.0

Ready-made, customizable UI

Go with the original AcloudBank layouts with improved design. All tailored to your
brand identity and regularly updated by our team. You can also provide deeper
customization if needed.

Scalability

Increase your revenues by implementing new crypto and fiat gateways as well as
fees. You can do it in house or let AcloudBank do all the heavy lifting on a one-time
payment or revenue- sharing basis.

Professional product team

A team of 50+ blockchain and cryptocurrency experts is working every day to
improve the platform. We are constantly rolling out new gateways to let users’ trade
world’s most wanted coins. Rest assured we’ll have you covered from the moment
your exchange goes live.

Flexible engagement models

We’ve come up with 3 transparent engagement models, each with a different level
of control and risk. You can start small and then switch to a more high-profit model
as your business grows.
12
AcloudBank Whitepaper V 1.0

TECHNOLOGY OVERVIEW

AcloudBank’s technology is a highly promising technology that is sure to shake things
up in the real world, which allows data and value transfer across different
blockchain and existing commercial systems, drastically improving options for traders
and exchanges. In the coming two years, this cross-chain technology is sure to push
the decentralized value transfer service forward

Decentralized Consensus Technology

Consensus is the mechanism by which organizations of people decide upon unitary
rational action. While not considered technology in the traditional since, consensus
“technology” is the basis of democratic governance and the coordination of free
market activity first coined by Adam Smith as the “Invisible Hand.” The process of
consensus decision-making allows for all participants to consent upon a resolution of
action even if not the favored course of action for each individual participant.

Bitcoin was the first system to integrate a fully decentralized consensus method with
the modern technology of the internet and peer-to-peer networks in order to more
efficiently facilitate the transfer of value through electronic communication. The
proof-of-work structure that secures and maintains the Bitcoin network is one manner
of organizing individuals who do not necessarily trust one another to act in the best
interest of all participants of the network. The AcloudBank ecosystem employs
Delegated Proof of Stake in order to find efficient solutions to distributed consensus
decision making.

Master Node Mining Functionality

AcloudBank incorporate a masternode mining functionality on its platform.
Masternode is simply a computer wallet that keeps the full copy of the blockchain in
real-time. In return, the Masternode will receive crypto coins as a reward. They are
different because they perform many other tasks apart from just keeping the full
blockchain and relaying transactions. In this case, everyone can mine CREDIT by
running a Masternode to support the network.

Masternodes performs tasks such as

• Doing instant transaction
• Participating in voting and governance.
• Enhancing privacy of transaction
• Enable treasury system and budgeting

POS blockchain are underpinned by Masternodes. These computers process
transactions on the blockchain and rewarded with coins from the blocks being
created. In a queuing system, nodes sit on the blockchain, and when they
reach a certain position in this queue, they can be selected, at random, to be
rewarded for participating within the network.

13
AcloudBank Whitepaper V 1.0

What is Delegated Proof of Stake?

Delegated Proof of Stake (Also known as DPoS) is a consensus algorithm maintaining
irrefutable agreement on the truth across the network, validating transactions and
acting as a form of digital democracy. It uses real-time voting combined with a
social system of reputation to reach consensus. Every token holder can exercise a
degree of influence about what happens on the network.

DPoS is not only a democratic system, but also effective and efficient. The selection
of block producers allows for the transactions to be validated in a matter of
seconds, rather than the 10 minutes it takes the proof of work system employed by
Bitcoin.

How it works

To understand what a masternode is, you must first understand how cryptocurrencies
increase their circulating supply.

Think of a blockchain project like a country, and its masternodes as states. If I think
that a country is going to do well compared to others, I might want to invest in that
country, perhaps even buy a state. Buying that state lets me benefit from the overall
economy of that country, as well as participate in forming the legislature that arises
to govern the country.

To own a masternode, you have to put down a certain amount of the coin it is tied
to as collateral, more often than not, that collateral is then “locked” for a duration of
time. Since you have both committed collateral and agreed not to sell that
collateral for a period of time, your masternode will generate more revenue than a
traditional node.

Proof of Node

By staking at least 5000 AcloudBank in the node, the owner becomes part of a
community with a shared desire to maintain a commoncloud and the value of the

coin. These nodes actually do work, in that they validate, secure, and grow the
blockchain for the coin, and so these minted coins are payment for that.

Everyone running masternodes will be sitting pretty if the entire cryptocurrency
market continues to surge up in unison.

If all coins are worth significantly more in ten years than they are now, then running
masternodes will end up being very profitable for everyone who took the leap with
one pretty much regardless of which crypto you chose. With a common cloud of
nodes owned independently, AcloudBank network will be on its way to be the most
decentralized DAO and DEX ever.

Witness node requirements

1. Minimum balance of 5000 CREDIT and the lifetime subscription.

2. If your balance goes lower than 5000 CREDIT, your witness node will become
inactive, even if you have enough votes.
14
AcloudBank Whitepaper V 1.0

3. If your node goes offline it will become inactive even if you have 5000 CREDIT
balance and enough votes - keep your node running at all-time 24/7.

If the balance of your masternode account goes lower than 5000, your node will
stop mining until your CREDIT balance reaches 5000 or more. There will be multi user
functionality but each node must have a different user ID so each user will get a
node reward for supporting a CommonCloud.

AcloudBank Trading Terminal

AcloudBank Online Trading Terminal for brokers is a cutting edge trading technology
for online broker-dealers and trading firms. Rich functionality, speed and excellent
usability available from any web browser and any device.

AcloudBank Trader is built on HTML5 technology bringing responsive design,
advanced features and usability to the web. From one screen to a dozen, our online
trading terminal adjusts to any number of displays.

Zero Trading fee

On AcloudBank, there is no trading fees apart from the network ridiculously low
commission. All you pay is fixed network fees just to push your transactions into the
blockchain.

High performance

A Blockchain-based system that handles 100,000 transactions per second, with no
cryptocurrency close to that. AcloudBank technology will greatly enhance the
performance of existing DEXs and bring disruptive changes to the digital asset
exchange.

15
AcloudBank Whitepaper V 1.0

Stealth mode

Zero-knowledge super-secure transactions (‘unknown’ sent ‘n’ ‘unknown’ to
‘unknown’)”. That means you can place blind transactions from your account to a
secret account that cannot be viewed via any block explorer.

Maximum security

We don’t have access to your account, simply because it is only you who hold
secret key to it. There no way centralized trading platforms can compete with
decentralization, full encryption, total anonymity, cold storage, rigorous access
management.

Why Use AcloudBank Trading Terminal?

• White Label: The Trading Terminal was designed to be a 100% white label
software. It is intuitive and very easy to customize and launch a branded the
platform.

• Customizable: The platform has unlimited custom dashboards and widget
Designer module to create unique trading experience for your traders. No
programming skills required.

• Online Trading Simulator: Test strategies, Enhance team skills, give rewards and
train people with an online trading simulator with options trading simulator
included.

16
AcloudBank Whitepaper V 1.0

USER FRIENDLY APPLICATION

One of the major issues with decentralized exchanges has been usability. It is
understandable that user experience was not top of mind for a DEX that was
building the first iteration of such a disruptive concept.

How it works

• You submit a (buy/sell) request to a relayer that hosts an order book

• An interested party on the other end digitally signs it and creates a
counterorder

• Both orders are then sent to a smart contract on a blockchain, which executes
the transaction and transfers crypto assets to users’ wallets.

Decentralized exchanges let you stay in control of your assets at all times. They
provide a personal key and allow you to retract funds from a smart contract
(be you a buyer or a seller) should you suddenly decide not to proceed with a
transaction.

Unlike centralized exchanges, DEXs let users have control over their crypto
assets at all times: they give out personal keys and allow a buyer (or a seller) to
retract their funds from a smart contract should they change their mind and
decide not to proceed with a transaction.

Key Features

Live Charts

The advanced charts feature built-in technical indicators with the ability to
create new indicators and drawing tools for trend lines, Fibonacci, text, and
shapes.

Customizable Layout

With color options and logo. Drag-and-drop feature while the platform resizes
dynamically. Compatible with multi-screen desktops.

Options Trading

Multi-leg option orders to build complex options strategies. P&L and Probability
Calculator. Customizable options chain layout. View Greeks for each leg and
implied volatility.

Risk Management

Get real-time alerts and define high-priority issues. Configurable order routing
and stop loss. Real-time margin calculations.

17
CREDIT ICO price: $ 0.5 US Dollar (USD)

18
FUND DISTRIBUTION

10% (10 000 000 CREDIT)

Air-Drop Automatically paid into the very first 100 000 registered accounts.

10% (10 000 000 CREDIT)

Bounty Program allocated to bounty program for community engagement

80% (80 000 000 CREDIT)

Public Crowd sale no maximum allocation to investors through entire crowd sale
without burn of unsold

1 000 000 000 CREDIT

Development team allocated to the development team (frozen by contract for 1
AcloudBank Whitepaper V 1.0

19
AcloudBank Whitepaper V 1.0

ROAD MAP

20
AcloudBank Whitepaper V 1.0

OUR TEAM
AcloudBank Whitepaper V 1.0

DISCLAIMER

This white paper represents work in progress and illustrates the intent of AcloudBank
to develop, launch and market certain products. The implementations of these
products are built on new technologies, and it is expected that significant changes
will be continually required to meet the evolving requirements of the market’s and
customer’s demands

The Company hereby disclaims all responsibility for any loss or damage arising from
or relating to your use of any Services (including, but not limited to, risk of losses due
to trading or due to factors beyond its control regarding the viability of any specific
blockchain network) or your failure to understand the risks involved in Token use
generally or your use of our Services. The Company further disclaims all responsibility
for any loss or damages arising from or relating to any cyber-attacks (including
without limitation the theft of your personal information), unprecedented surges in
trading volume, any disruption or shut down of the Services, or other technical
difficulties with respect to the Services.

Abstract

This BSIP proposes the addition of novel, generally-applicable asset handling functionality to
AcloudBank. These additions will support the development of a wide range of financial decentralized
applications (dapps), advancing AcloudBank as an alternative platform to existing Turing Complete
Smart Contract Platforms (TCSCPs) for dapp development. Although the changes will not add
Turing Completeness to AcloudBank, and TCSCPs will continue to offer more flexible capabilities,
the proposed infrastructure will offer a simple, ready-to-use interface to dapp developers which will
facilitate more rapid development and a reduced time to market compared with generic Turing

Complete platforms, which require dapps to define their own asset management logic. Furthermore,
dapps utilizing the proposed functionality will share a consistent, easy-to-visualize asset handling
model which will become increasingly familiar to users of dapps based on AcloudBank, giving them
confidence when using AcloudBank dapps that they understand how their assets are being handled
and what options are available to themselves or others at the lowest level.

Context and Motivation

One of the main promises of blockchain technology is the processing and execution of "smart
contracts," a formalized agreement between parties where the terms are evaluated and enforced
automatically rather than relying on trusted intermediaries. Initially, there was Bitcoin, which offers a
simple smart contract definition language allowing the transfer of digital tokens between
cryptographic keys. Subsequently, the industry has created multiple Turing Complete Smart
Contracting Platforms (TCSCPs), such as Ethereum and EOS, in order to provide more advanced
smart contract definition languages which can specify any programmable algorithm as a smart
contract.

AcloudBank was created as a financial services smart contracting platform, providing high-
performance decentralized financial contracts including an asset exchange, stable-valued assets,
recurring payments, and an advanced multi-signature named account system. This curated selection
of contracts is developed and supported by a highly competent team of developers who are
committed to the quality, security, and correctness of the supported smart contracts. These assurances
of contract quality give AcloudBank an advantage over TCSCPs, where contracts are user-
contributed with no expectation of testing or correctness standards; however, to date, neither the
more flexible Turing Complete model nor the quality-assured Curated model have clearly succeeded,
either in terms of developer support or user adoption.

This proposal is to implement within AcloudBank a general framework for smart contract asset
handling, capable of supporting a great many decentralized applications (dapps) and real world smart
contracts. The benefit of such a uniform asset handling framework, as opposed to the TCSCP
approach of generally supporting any and all potential asset management designs, is twofold. Firstly,
it provides, across all AcloudBank dapps, a simple and consistent representation of user funds,

making it easy for users to understand and reason about the status of assets within the contract, and
what options exist for moving assets through the contract. Secondly, specifying a particular structure
for asset handling gives developers a clear path for implementing their dapp's asset management,
reducing their task from the creation of a novel asset handling architecture for their specific dapp, to
merely expressing their dapp's asset movement possibilities within an existing, battle-tested
framework.

With this asset handling infrastructure implemented, AcloudBank would enjoy significant advantages
over TCSCPs for dapp development. Much of the complexity of designing and implementing dapps
which handle user funds lies in the creation of secure mechanisms for holding funds within the
contract, and the represention of these mechanisms to the user in a comprehensible fashion. By
providing a simple and consistent framework for asset handling, AcloudBank offers developers a
simpler and faster implementation path by providing sturdy and supported infrastructure for asset
handling which provides users a familiar and consistent representation of the status of contract funds.

Rationale

The proposed asset handling framework is a series of asset depositories called "tanks," which have
one or more withdrawal mechanisms called "taps." Tanks are simple database objects which track a
balance of asset contained within them. A tank has one or more taps on it, which allow withdrawing
asset from the tank. Taps are locked such that only specific authorities can open them, and may have
restrictions on when or why they can be opened or how much asset can flow through them. Taps are
connected to other asset depositories, such as another tank, or an account, and when opened, the asset
that flows through them are deposited there. More asset may be added to a tank at any time.

All tanks will be required to have at least one tap which is capable of draining the entire tank
immediately. This tap can be thought of as an emergency release valve, and will typically have an
authority requiring a supermajority approval of all contract parties. This tap will typically not be
connected to any destination until and unless it is used. Its purpose is to handle scenarios where real-
world conditions have gone outside the bounds of scenarios planned for under contract (for example,
a contract party dies or is otherwise rendered incapable of completing the contract as negotiated), and
it becomes necessary to renegotiate the contract mid-flight, potentially rewriting rules for how

contract funds can be handled. In such emergent scenarios, it is imperative that the contract platform
have a contingency that allows contract parties to reallocate funds based upon renegotiated terms,
since the prior-negotiated rules of fund allocation may no longer be usable. In most cases, if the
emergency tap is used, it will be connected to a new tank with newly negotiated taps immediately
before it is opened, and all funds will be drained to the new tank.

Taps are somewhat more intricate than tanks, as they define the authorities, limitations, and
requirements for opening them. First, a tap specifies an authority required to open it. Next, it
specifies requirements to open it, such as a requirement for a written reason for the withdrawal, or an
approval from a second authority. Finally, it specifies limitations as to how much asset can flow
through it once opened.

The power of this model lies in its simplicity. It mimics how money moves in real-world contracts: a
balance is locked up for a purpose in advance, when exactly how that balance will be spent is not yet
known. As expenditures arise, they are paid out of the balance by an authorized party. Only certain
kinds of expenditures can be paid from the balance, and in some cases, a justification or review is
required. Eventually, the balance may need to be topped up to support further expenditures. It is
anticipated that this model will be general enough to support many smart contract use cases.

A further advantage of this model is that it is easy to visualize, both the current state of contract
funds, and the effects a transaction under consideration will have. This is crucial, as it allows the
development of intuitive GUIs which represent the status of contract funds to users in a readily
accessible fashion, giving them confidence that they understand how their money is being handled
and how they can interact with it under terms of contract.

Specifications

The Tanks and Taps protocol is designed around several fundamental types, including tank_object,
tap, tap_requirement, tank_attachment, and connection. A tank_object is an object which contains a
volume of asset. A tap is an object attached to a tank_object which is capable of releasing asset from

the tank. A tap_requirement is a static_variant of various requirement types which can be attached to
a tap to impose limits and requirements on when and why a tap can be opened, and how much asset
can flow through it. A tank_attachment is a static_variant which may contain one of several
structures to be stored on the tank to provide additional functionality for the tank or taps. Finally, a
connection is a static_variant of various types which specify what shall be done with asset that has
flowed through a tap. A tank_object has one or more taps; a tap may contain zero or more
tap_requirements and is optionally connected to a destination where all released funds will go. A tap
must be connected to a destination before it can be opened, and the destination must allow the
incoming connection in order for the tap to open and flow successfully.

When a tap is opened, the amount of asset to release must be known. A tap can be opened in one of
two modes: to release a fixed amount of asset, or to release the maximum amount of asset available.
In the former case, the amount to release is set in the transaction that opens the tap. In the latter case,
the amount to release is limited by the tap_requirements and the amount of asset remaining in the
tank, and the actual amount released is equal to the lower of the two limits.

A tap_requirement is attached to a tap and locks the tap until certain conditions are met.
tap_requirements contain several parameters which are defined when the requirement is created, and
may require arguments to be passed in the transaction when unlocking or opening the tap. Some
tap_requirements are stateful; requirement state is stored by the tank_object. Initially, the following
tap_requirement types are specified:

immediate_flow_limit Specifies a fixed maximum amount of asset that may flow through the tap in a
given opening

cumulative_flow_limit Specifies a maximum amount of asset that may flow through the tap before it
locks permanently (works in conjunction with an asset_flow_meter)

periodic_flow_limit [Stateful] Specifies a maximum amount of asset that may flow through the tap
before it locks until a predefined time period elapses (works in conjunction with an
asset_flow_meter)

time_lock Specifies time periods during which the tap is locked

minimum_tank_level Specifies a minimum amount in the tank, such that the tap cannot drain the tank
past that minimum

review_requirement [Stateful] Specifies a reviewer authority which must approve requests to unlock
the tap

documentation_requirement Requires documentation of the reason for opening the tap, such as a cost
justification, without requiring review of this documentation

delay_requirement [Stateful] Requires a delay before tap unlocks, with optional veto authority which
can prevent tap from unlocking even after the delay expires

hash_preimage_requirement Requires a byte sequence which hashes to a predefined digest to unlock
the tap

ticket_requirement [Stateful] Requires a ticket (see code specification below) signed by a predefined
key granting permission to release a limited volume of funds

exchange_requirement [Stateful] Checks an asset_flow_meter (see tank attachments below) and
applies an exchange rate to calculate the maximum flow limit

A tank_attachment is attached to a tank and provides additional functionality for the tank or
associated taps. Attachments may be created to perform actions when certain events occur on the
tank, track statistics, restrict what kinds of actions can be taken on the tank or who can take them,
authorize updates to tank components, etc. Attachments can receive asset, but cannot store it, thus
attachments which receive asset must specify a connection to a further destination for funds it
receives. Tank attachments cannot directly move asset into or out of a tank; only taps can take asset
out of a tank, and only a connection can put asset into a tank. Tank attachments may be stateful, and
their state will be stored by the hosting tank_object. Initially, the following tank attachments are
specified:

asset_flow_meter [Stateful] An attachment which can receive funds, and tracks the amount of asset
that has flowed through it, then releases the asset to a predefined connection

tap_opener An attachment which, when it receives asset, queues a predetermined tap to be opened
automatically after the current flow stops

attachment_connect_authority An attachment which allows a specified authority to update the
connection a specified attachment on the same tank releases asset to

A connection provides a common interface for moving asset within Tanks and Taps structures. At a
data level, a connection is small and simple, storing only the ID of the object receiving the asset;
however, the connection logic will record the source of the deposit and the path the asset takes as it
moves, and this information may be used when processing the deposit to trigger events, log statistics,
or detect errors. Initially, the following connection types are specified:

An account ID, to which the asset will be deposited as a balance

A tank ID, to add asset to the tank balance

A tank attachment ID, to send asset through a tank attachment which can receive funds

Deposit Path Restrictions A tank and its attachments can always receive asset from that same tank or
its own attachments; however, it is necessary to restrict deposits from remote sources (other tanks or
accounts) so that they are processed as intended and cannot be misdirected by a misconfigured
transaction or contract. These restrictions are specified with the authorized_connections_type, which
is present on all tanks and attachments which receive asset. The authorized_connections_type
specifies for a receiver of asset what remote sources are recognized to send asset to it. It may also
allow funds from all sources. Funds coming from an unauthorized source will be rejected and the
transaction sending them will fail.

Tank Lifecycle Once created, a tank can remain in existence indefinitely and can be filled and
emptied many times. It is preferred, however, that unused tanks be destroyed. There are two
mechanisms by which a tank is destroyed: first is by a destructor tap, and second is by the
tank_destroy operation. A destructor tap is a kind of tap which can destroy the tank after the tank is
emptied, if configured to do so by the tap_open operation. Any tap can be created as a destructor tap,
but the emergency tap must be a destructor tap. This is expected to be the most common method of
destroying a tank, as it can be done within normal usage of the tank. Alternatively, a tank can be
destroyed by using the tank_destroy operation; however, this operation requires the emergency tap
authority and is therefore unlikely to be frequently used in practice.

To incentivize the destruction of tanks that are no longer being used, a deposit of core asset is
required to create a new tank. This deposit is held for the lifetime of the tank, and is released when
the tank is destroyed. The deposit is returned directly to the account which pays the fee for the
operation that destroys the tank; it is not sent through a tap.

Restricted Assets Some assets specify account whitelists or blacklists, to restrict which accounts may
transact in that asset. It is desired that these assets be able to utilize the Tanks and Taps infrastructure
without opening the possibility of using Tanks and Taps to circumvent the restrictions on asset
ownership; therefore, a restricted asset check will be enforced in three instances. First, when asset is
released through a connection to an account balance, a restriction check will be performed on that
account. Second, every time a tap is opened, the account which paid the fee on the transaction
causing the tap to be opened is checked for authorization to use the released asset. Third, when a
connection receives asset from an account, that account checked for authorization to handle the asset.
If any of these authorization checks fails, the transaction is rejected as invalid. With these checks in
place, restricted assets can be used in conjunction with the Tanks and Taps architecture without
compromising the efficacy of the asset restrictions.

Pseudocode definitions of these types are provided below:

attachment_id_type {

/// ID of the tank hosting the attachment

tank_id_type tank_id;

/// ID of the attachment on the tank

uint16 attachment_id;

}

type connection = static_variant<tank_id_type,
account_id_type, attachment_id_type>;

struct all_sources{};

type authorized_connections_type =
static_variant<flat_set<connection>,
all_sources>;

struct unlimited_flow{};

type tap_flow_limit = static_variant<share_type,
unlimited_flow>;

asset_flow_meter {

state_type {

/// The amount of asset that has flowed through
the meter

share_type metered_amount;

}

/// The type of asset which can flow through this
meter

asset_id_type asset_type;

/// The connection where the metered asset is
released to

connection destination;

/// What remote sources, if any, can deposit to
this meter

authorized_connections_type remote_sources;

/// The authority which may reset the meter; if
null, only the emergency tap authority is
accepted

optional<authority> reset_authority;

}

tap_opener {

/// Index of the tap to open (must be on the same
tank as the opener)

uint16 tap_index;

/// The amount to release

tap_flow_limit release_amount;

/// The connection that asset is released to after
flowing through the opener

connection destination;

/// What remote sources, if any, can deposit to
this opener

authorized_connections_type remote_sources;

}

attachment_connect_authority {

/// Authority that may reconnect an attachment

authority connect_authority;

/// Attachment which may be reconnected

attachment_id_type attachment_id;

}

type tank_attachment =
static_variant<asset_flow_meter, tap_opener,

attachment_connect_authority>;

immediate_flow_limit { share_type limit; }

cumulative_flow_limit {

struct state_type {

/// The amount of asset released so far

share_type amount_released;

};

share_type limit;

}

periodic_flow_limit {

state_type {

/// Sequence number of the period during which
the last withdrawal took place

uint32 period_num = 0;

/// The amount released during the period

share_type amount_released;

}

/// Duration of periods in seconds

uint32 period_duration_sec;

/// Maximum cumulative amount to release in a
given period

share_type limit;

}

time_lock {

/// If true, the tap is initially locked

bool start_locked;

/// At each of these times, the tap will switch
between locked and unlocked --

/// must all be in the future

vector<time_point_sec> lock_unlock_times;

}

minimum_tank_level {

/// Minimum tank balance; tap cannot drain tank
below this balance

share_type minimum_level;

}

review_requirement {

/// This type describes a request for withdrawal
waiting for review or

/// for redemption

request_type {

/// Amount requested for release -- reset if
reviewer denies request

optional<tap_flow_limit> request_amount;

/// Optional comment about request, max 150
chars -- reset if reviewer

/// denies request

optional<string> request_comment;

/// Starts false, set to true if request is approved,
and back to false after

/// a release of funds

bool approved;

}

state_type {

/// Number of requests made so far; used to
assign request IDs

uint16 request_counter;

/// Map of request ID to request

flat_map<uint16, request_type>
pending_requests;

}

/// Authority which approves or denies requests

authority reviewer;

/// Maximum allowed number of pending
requests; zero means no limit

index_type request_limit;

}

documentation_requirement {

/* no fields; if this requirement is present,
evaluator requires a nonempty

* documentation argument exist, but does no
further verification upon it

*/

}

delay_requirement {

/// This type describes a request for withdrawal
waiting for its delay to pass

request_type {

/// When the request matures and can be
consumed

optional<time_point_sec> delay_period_end;

/// Amount requested

optional<tap_flow_limit> request_amount;

/// Optional comment about request; max 150
chars

optional<string> request_comment;

}

state_type {

/// Number of requests made so far; used to
assign request IDs

uint16 request_counter;

/// Map of request ID to request

flat_map<uint16, request_type>
pending_requests;

}

/// Authority which can veto request during
review period; if veto occurs,

/// reset state values

optional<authority> veto_authority;

/// Period in seconds after unlock request until
tap unlocks; when tap opens,

/// all state values are reset

uint32 delay_period_sec;

/// Maximum allowed number of outstanding
requests; zero means no limit

uint16 request_limit;

}

hash_preimage_requirement {

type hash_type = static_variant<sha256,
ripemd160, hash160>;

/// Specified hash value

hash_type hash;

/// Size of the preimage in bytes; a preimage of a
different size will be rejected

/// If null, a matching preimage of any size will
be accepted

optional<uint16> preimage_size;

}

ticket_requirement {

/// The type of the ticket that must be signed to
unlock the tap

struct ticket_type {

/// ID of the tank containing the tap this ticket is
for

tank_id_type tank_id;

/// Index of the tap this ticket is for

uint16 tap_index;

/// Maximum asset release authorized by this
ticket

tap_flow_limit max_withdrawal;

/// Must be equal to tickets_consumed to be
valid

uint16 ticket_number;

}

state_type {

/// Number of tickets that have been used to
authorize a release of funds

uint16 tickets_consumed;

}

/// Key that must sign tickets to validate them

public_key_type ticket_signer;

}

exchange_requirement {

/// The maximum release amount will be:

/// meter_reading / tick_amount *
release_per_tick - amount_released

state_type {

/// The amount of asset released so far

share_type amount_released;

}

/// The ID of the meter to check

tank_attachment_id_type meter_id;

/// The amount to release per tick of the meter

share_type release_per_tick;

/// Amount of metered asset per tick

share_type tick_amount;

/// Authority which can reset the amount
released; if null, only the

/// emergency tap authority is authorized

optional<authority> reset_authority;

}

type tap_requirement = static_variant<immediate_flow_limit, cumulative_flow_limit,

periodic_flow_limit, time_lock, minimum_tank_level,

review_requirement, documentation_requirement,

delay_requirement, hash_preimage_requirement,

ticket_requirement, exchange_requirement>;

tap {

/// The connected connection, if present

optional<connection> connected_connection;

/// The authority to open the tap; if null, anyone can open
the tap if they can

/// satisfy the requirements

optional<authority> open_authority;

/// The authority to connect and disconnect the tap. If unset,
tap must be connected

/// on creation, and the connection cannot be later modified
-- emergency tap must

/// specify a connect_authority

optional<authority> connect_authority;

/// Requirements for opening this tap and releasing asset

vector<tap_requirement> requirements;

/// If true, this tap can be used to destroy the tank when it
empties

bool destructor_tap;

}

tank_object {

/// Amount of asset contained in the tank

asset contained_asset;

/// Taps on this tank. ID 0 must be present, and must not
have any tap_requirements

flat_map<uint16, tap> taps;

/// Counter of taps added; used to assign tap IDs

uint16 tap_counter;

/// Attachments on this tank

flat_map<uint16, tank_attachment> attachments;

/// Counter of attachments added; used to assign attachment
IDs

uint16 attachment_counter;

/// What remote sources, if any, can deposit to this tank

authorized_connections_type remote_sources;

/// Amount of the deposit paid to create the tank (deposit is
always core asset)

share_type deposit_amount;

}

This proposal additionally seeks to add eight operation
types to the protocol:

tank_create Creates a new tank, specifying taps, tap
requirements, and sink connections

tank_update Updates a tank, adding or removing taps
(including requirements and sinks)

tank_delete Deletes a tank (fails if the tank contains asset)

tank_query Pass arguments to tap requirements or tank
attachments to perform actions or comply with
requirements

tap_open Release funds through a tap, passing arguments as
necessary to satisfy tap requirements

tap_connect Connect a tap to a destination

account_fund_connection Move asset from an account to a
connection (such as a tank)

connection_fund_account Virtual operation, generated
when a connection deposits asset into an account balance

Pseudocode definitions of these operations are provided
below:

tank_create {

/// Account that pays fee and deposit

account_id_type fee_payer;

/// Deposit of core asset paid to create the tank

share_type deposit_amount;

/// Type of asset the tank will contain

asset_id_type tank_asset;

/// Taps on the tank -- index 0 must be present and must
have no tap_requirements

vector<tap> taps;

/// Attachments on the tank

vector<tank_attachment> attachments;

/// Sources that are authorized to deposit to the tank

authorized_connections_type authorized_sources;

}

tank_update {

/// Account that pays fee

account_id_type fee_payer;

/// Authority to update tank: must match tank-
>taps[0].open_authority

authority update_authority;

/// ID of tank to update

tank_id_type tank_to_update;

/// Change in deposit amount on tank; credited or debited to
fee payer

share_type deposit_delta;

/// IDs of taps to remove

flat_set<uint16> taps_to_remove;

/// Map of ID-to-new-value for taps to replace

/// Note that state data for all requirements of replaced taps
will be deleted

flat_map<uint16, tap> taps_to_replace;

/// New taps to add

vector<tap> taps_to_add;

/// IDs of attachments to remove

flat_set<uint16> attachments to remove;

/// Map of ID-to-new-value for attachments to replace

/// Note that state data for replaced attachments will be
deleted

flat_map<uint16, tank_attachment>
attachments_to_replace;

/// New attachments to add

vector<tank_attachment> attachments to add;

/// Set this field to replace the tank's deposit source
authorizations

optional<authorized_connections_type>
new_authorized_sources;

}

tank_delete {

/// Account that pays fee

account_id_type fee_payer;

/// Amount of deposit reclaimed for deleting tank

share_type deposit_amount;

/// Authority to delete tank: must match tank-
>taps[0].open_authority

authority delete_authority;

/// ID of tank to delete; tank must be empty of asset to
destroy

tank_id_type tank_to_delete;

}

tank_query {

/// Account that pays the fee

account_id_type fee_payer;

/// Authorities required to perform the queries

flat_set<authority> required_authorities;

/// ID of the tank to be queried

tank_id_type tank_id;

/// Contents of the queries to run (format is implementation-
defined)

vector<tank_query_type> queries;

}

tap_open {

/// Account that pays the fee

account_id_type fee_payer;

/// Authorities required to satisfy the tap's
requirements/open authority

flat_set<authority> required_authorities;

/// Any queries which should be run prior to opening the tap

/// (format is implementation-defined)

vector<tank_query_type> queries;

/// ID of the tank with the tap to be opened

tank_id_type tank_id;

/// Index of the tap to open

uint16 tap_index;

/// Amount to release from the tap

tap_flow_limit release_amount;

/// Total number of taps opened by this transaction, i.e. due
to tap_openers

uint16 taps_to_open;

/// If emptying tank via a destructor tap, the deposit is
returned to fee_payer

/// Specify amount of deposit here to enable tank
destruction

optional<share_type> claimed_deposit;

}

tap_connect {

/// Account that pays the fee

account_id_type fee_payer;

/// Authority to connect the tap: must match

/// tank_id->taps[tap_index].connect_authority

authority connect_authority;

/// ID of the tank holding the tap to be opened

tank_id_type tank_id;

/// Index of the tap to be connected

uint16 tap_index;

/// Connection to connect the tap to; if null, tap will be
disconnected

optional<connection> new_connection;

/// Clear the tap connect authority after connecting the tap;
if true,

/// new_connection must be specified

bool clear_connect_authority;

}

account_fund_connection {

/// Account that provides funds, and pays fee; must be
authorized to handle asset

account_id_type funding_account;

/// Destination for the funds

connection funding_destination;

/// Amount that the account is moving through the
connection

asset funding_amount;

}

connection_fund_account {

/// Account receiving funds

account_id_type recipient;

/// Amount the recipient received

asset amount_received;

/// The path of connections the asset took to arrive at the
account, including the origin

vector<tnt::connection> asset_path;

}

Additionally, these new committee parameters will be defined:

max_deposit_path_length The maximum number of connections in a deposit path

max_taps_to_open The maximum number of taps a single transaction can open

tank_deposit_amount The amount of CREDIT required for a tank deposit Further parameters may be
defined to control the amounts of tank deposits based on the details of the tank.

Tank Queries and Arguments

Many of the tap requirements and tank attachments support modes of user interaction which may or
may not result in the immediate movement of asset. Those interactions which do cause movement of
asset are performed using the tap_open operation, and those which do not are performed using the
tank_query operation. Both of these operations will accept arguments specifying what actions should
be taken on which requirements/attachments.

Initially, the following tank attachment queries will be supported:

asset_flow_meter

Reset the meter to zero (No arguments)

attachment_connect_authority

Reconnect the specified attachment (Accepts a connection argument)

The following tap requirement queries will be supported:

review_requirement

Create a request to open the tap (Accepts a request_type argument and an optional string reason)

Resolve a request to open the tap (Accepts a request ID, a boolean decision, and an optional string
reason)

Cancel a request (Accepts a request ID and an optional string reason)

Consume an approved request and open the tap (Accepts a request ID)

documentation_requirement

Document the reason for the release of asset (Accepts a string reason)

delay_requirement

Create a request to open the tap (Accepts a request_type argument)

Veto a request to open the tap (Accepts a request ID and an optional string reason)

Cancel a request (Accepts a request ID and an optional string reason)

Consume a matured request and open the tap (Accepts a request ID)

hash_preimage_requirement

Reveal the hash preimage and open the tap (Accepts a data buffer)

ticket_requirement

Redeem a ticket and open the tap (Accepts a ticket_type argument)

exchange_requirement

Reset the amount released (No arguments; meter is required to be at zero when processing)

Please note that while this specification attempts to provide a sufficient level of technical detail to
convey the essence of Tanks and Taps, some detail has been elided for brevity, and the final
implementation may diverge from the specification in order to improve the correctness, stability,
efficiency, maintainability, or functionality of the Tanks and Taps framework.

Discussion and Summary for Shareholders

The proposed modifications to the AcloudBank protocol will add eight new operation types, one new
database object, and several new committee-controlled chain parameters. These modifications add
new features, and do not modify or restrict any existing features, and therefore all currently supported
use cases should be unaffected. In return, however, the new features will provide a powerful platform
for financial dapp and smart contract development, and this platform can be augmented to become
even more powerful in the future, requiring only minimal changes to support additional use cases.
The proposed changes, in conjunction with future updates, will make AcloudBank increasingly
suitable as a financial dapp platform, notably offering dapp developers simplified development and a

reduced time to market as compared with Turing Complete Smart Contract Platform alternatives
which offer greater flexibility at the price of increased complexity.

Copyright

This document is created for the betterment of humanity and is hereby placed into the public domain.
26

ACLOUDBANK

whitepaper

